Standardisation & investigation of preliminary phytoconstituents at three stages of fruiting of figs of Udumbar (Ficus racemosa Linn.)

Dr.Rajane Vijay Jadhav¹, Dr.Sambhaji Tike²

ABSTRACT

Background: Udumbar (Ficus racemosa Linn.) is a plant seen mostly all over India. It’s every part i.e. root, stem, leaves, fruits, ksheer are used in treatment of various diseases Diabetes, Diarrhoea, Cancer by its pharmaceutical & nutritional properties. Though having medicinal property abundant amount of its fruits are wasted. It green fruit is eaten as vegetable in villages & ripened fruits are eaten. Udumbar trees are seen in so often Udumbar fruiting is in clusters & 2-4 times in year. Feasibility of fruits are good. They can be eaten directly or with honey/sugar/jaggery/ghee. Therefore it will be cheapest, easily available nutrition to children, in pregnant woman, malnourished patients of cancer, diabetes, HIV, Koch’s etc as compared to available costly nutritious, pharmaceutical drugs.

Materials and Methods: Samples were collected 5 seasons of its fruiting throughout year from Kharghar – Navi Mumbai & are authenticated. Collection of equal amount of samples each at three stages of figs of Udumber (Ficus racemosa Linn.) i.e Unripened figs (Bright green), Middle stage between Unripened & ripened (Reddish orange), Ripened Figs (Red) from different clusters of same plants randomly. Standardization were done according to Ayurvedic Pharmacopedia of India. Study were done in 3 stages i.e Pharmacognostic study, preliminary phytoconstituents study and analysis of collected data by ANOVA method done.

Result and Discussion:
- **Ficus racemosa** is with ripened fig- LOD:0.11%,ASH:8.05%,AIA:0.746%,ASE:8.896%,WSE:28.304%,pH:5.2.
- Proteins:9.07%, Carbohydrates:21.64%, Fixed oils: 5.12%
- Primary metabolites present as Carbohydrates, Proteins & fats. Presence of secondary metabolites like Tannin, Glycosides, Steroids, Caumarins, Flavonoids in all stages of ripened & unripened figs. Alkaloids & saponins are not traceful. Calcium, Phosphorus, Iron, Silica, Potassium etc. are present in all stages.

Conclusion: ANOVA test done for statistical evaluation. There are no significant difference in view of Physicochemical & phytoconstituents evaluation at three stages of figs of Udumbar.

Key words: ANOVA, Phytoconstituents, Primary & secondary metabolites, Udumbar.

INTRODUCTION

WHO & UNICEF giving more importance to easily available therapeutic food at home & its surroundings for the treatment. Government of India recently declared 365 days campaign program for cultivation & conservation of medicinal plants & their uses in day to day life. Health of the person is directly concerned with economic development of country (per capita income).

UDUMBAR (Ficus racemosa Linn.) is a plant seen mostly all over India. It’s every part i.e. root, stem, leaves, fruits, ksheer are used in treatment of various diseases Diabetes, Diarrhoea, Cancer by its pharmaceutical & nutritional properties. Though having medicinal property abundant amount of its fruits are wasted. It green fruit is eaten as vegetable in villages & ripened fruits are eaten. Udumbar trees are seen in so often Udumbar fruiting is in clusters & 2-4 times in year. Feasibility of fruits are good. They can be eaten directly or with honey/sugar/jaggery/ghee. Therefore it will be cheapest, easily available nutrition to children, in pregnant woman, malnourished patients of cancer, diabetes, HIV, Koch’s etc as compared to available costly nutritious, pharmaceutical drugs.

Aim & Objective: To Standardise & to investigate preliminary phytoconstituents of unripened, middle stage & ripened figs of Udumbar (Ficus racemosa).
METHODS
A) Sample collection & Preparation:
1. Authentication of samples from blatter herbarium done.
2. Collection & preparation of sample:
Plant has crops 2-5 times from January-December. At that period figs were be collected as crops A,B,C,D,E in equal amounts from same plants at three stages of fruiting figs of *Udumbar (Ficus racemosa Linn.)* from different clusters of same plants randomly as unripened(green),middle stage(orange),ripened (redish) on the basis of colour of the fruit. Samples were chopped in small pieces, dried in shade, Powder 85mesh were taken as test sample.

TYPE OF STUDY DESIGN:
1. Pharmacognostic study
2. Chemical composition study
3. Analysis of collected data

RESULTS

Table 1: Phytochemical Test for Standardization:

<table>
<thead>
<tr>
<th>Stage</th>
<th>ASH%</th>
<th>AIA%</th>
<th>ASE%</th>
<th>WSE%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.842</td>
<td>1.26</td>
<td>9.764</td>
<td>16.264</td>
</tr>
<tr>
<td>2</td>
<td>9.084</td>
<td>1.208</td>
<td>8.544</td>
<td>22.04</td>
</tr>
<tr>
<td>3</td>
<td>8.054</td>
<td>0.746</td>
<td>8.896</td>
<td>28.304</td>
</tr>
</tbody>
</table>

Table 2: Nutritional factors:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Carbohydrates</th>
<th>Proteins</th>
<th>Fixed oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.64</td>
<td>9.07</td>
<td>5.12</td>
</tr>
<tr>
<td>2</td>
<td>21.904</td>
<td>9.96</td>
<td>4.422</td>
</tr>
<tr>
<td>3</td>
<td>22.88</td>
<td>9.344</td>
<td>3.736</td>
</tr>
</tbody>
</table>

Table 3: Phytoconstituents:

<table>
<thead>
<tr>
<th></th>
<th>A 1</th>
<th>A 2</th>
<th>A 3</th>
<th>B 1</th>
<th>B 2</th>
<th>B 3</th>
<th>C 1</th>
<th>C 2</th>
<th>C 3</th>
<th>D 1</th>
<th>D 2</th>
<th>D 3</th>
<th>E 1</th>
<th>E 2</th>
<th>E 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkoids</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Glycosides (purple)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steroids (red-brown)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Caumarsins (green blue)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavonoids (pink)</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Minerals:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Ca</th>
<th>K</th>
<th>P</th>
<th>Si</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unripened</td>
<td>43.2</td>
<td>40.0</td>
<td>5.95</td>
<td>2.80</td>
<td>1.37</td>
</tr>
<tr>
<td>Middle Stage</td>
<td>43.5</td>
<td>39.7</td>
<td>5.66</td>
<td>3.17</td>
<td>1.47</td>
</tr>
<tr>
<td>Ripened</td>
<td>39.7</td>
<td>43.3</td>
<td>5.87</td>
<td>3.30</td>
<td>1.61</td>
</tr>
</tbody>
</table>

Table 5: Minerals:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Ca</th>
<th>K</th>
<th>P</th>
<th>Si</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unripened</td>
<td>43.2</td>
<td>40.0</td>
<td>5.95</td>
<td>2.80</td>
<td>1.37</td>
</tr>
<tr>
<td>Middle Stage</td>
<td>43.5</td>
<td>39.7</td>
<td>5.66</td>
<td>3.17</td>
<td>1.47</td>
</tr>
<tr>
<td>Ripened</td>
<td>39.7</td>
<td>43.3</td>
<td>5.87</td>
<td>3.30</td>
<td>1.61</td>
</tr>
</tbody>
</table>
DISCUSSION

Figs of Udumbar contains
- Proteins, Carbohydrates, Fixed oils as primary metabolites with +00+0 calories
- Calcium, Phosphorus, Potassium, Iron, Silica are micronutrients present in figs.
- Phytoconstituents like Sterols-Stigmasterols, Tannin, Glycosides, Flavonoids, Caumarins are present. Tannin is an astringent, plant polyphenolic compound that binds to and precipitates proteins and various other organic compounds including amino acids and alkaloids. Coumarins have a significant effect on physiological, bacteriostatic and anti-tumor activity. coumarins are also used as additives in food and cosmetic industry, as laser dyes, agrochemical industries and also as optical brightening agents. Ripened figs meeting all parameters mentioned in API. As unripened & middle stage of figs parameters are not mentioned in API, standardization are procedures carried out according to API. There are difference in Physicochemical, Phytochemical & chromatographicay tests at different stages of figs. WSE, ASE values at different stages of figs. WSE, ASE values in API, standardization are procedures carried out according to API.

Scope for further studies:
1. Significant difference in Steroids, Caumarin, Glycosides, Phosphorus% more in ripened than unripened. Silica% more in ripened than unripened. Phosphorus% more in unripened. Sulfur, Chloride, Zn, Iron% have not significant different in all stages. Tannins are more in unripened. Glycosides more in ripened Steroids more in unripened. Caumarin are more unripened. Flavonoids more in ripened. Stigmastosterol more in unripened. Statistically there is no significant difference in values of Carbohydrates, Fixed oil contents, Aminoacids & minerals at three stages of fruiting of fig of Udumbar. There is significant difference in Steroids, Caumarin, Glycosides contents.

CONCLUSION

Ripened figs of Udumbar meets API standards. Unripened & middle stage of fruiting of figs standardization done by all classical & pharmacoapulical methods. This values can referred for further studies. All three stages of fruiting of figs have primary metabolites like Carbohydrates, Proteins, Fats & micronutrients with no much significant difference in values. There is difference in phytoconstituents (tannin, sterols) which indicates more Manswadahan by unripened figs than ripened where nutrition (kshudhabar, trushahar) is concerned, there fruits can be used in any stage of fruiting. If neautreuticals is concerned as per necessary phytoconstituents, unripened or ripened figs can be selected as per pharmacoapulical property at different stages in accordance with Ayurvedic literature. WSE needed middle stage of fruiting at end of May & 1st week of June selected. ASE needed unripened stage of fruiting at end of May & 1st week of June will be selected. Tannin-Kashaya rasa needed unripened fruits at December end will be selected.

REFERENCES
1. Charak Samhita Sutrasthana 22.9, 22/26
3. Who.int/fectiqa/malnutrition/THS guidelines for phytochemical tests of herbal plants.
7. Website: Pub med
8. Google scholar
9. Wikipedia Elseweire
11. Wealth of India-Volume 3
12. Evaluation of phytoconstituents-Phytopharm,vol II
15. A.K. Gupta, Neeraj Tandon, Madhu Sharma, Quality Standards of Indian Medicinal Plants, Volume-6, Medicinal Plants Unit, Indian Council of Medical Research, New Delhi, Edition-2008.
22. Balokumar. An Experimental Evaluation Udumbara (Ficus glomerata Roxb) Baula Phala And Twalk With Special Reference To Its Gastric Ulcer Preventive Activity-A Comparative Study . Dravya Gana Vidyana . Sri Dharmasthala Manjunatheshwara College Of Ayurveda And Hospital, Kuthapu, Udapi . 2010
23. Phytopharmacological evaluation of Ficus glomerata Roxb. fruit for hypoglycaemic activity in normal & diabetic rabbits; Pak,J Pharma Sci.1998;i(2):87-96